

Viabilidad del compostaje de los restos de poda de palmera infestada por *Diocalandra frumenti* (Fabricius), para su aplicación como abono orgánico en jardinería: experiencias realizadas

Carina Ramos Cordero

Técnico contratado por el Instituto Canario de Investigaciones Agrarias (ICIA) en el marco del proyecto LIFE Phoenix

PLAN DE CONTROL Y ERRADICACIÓN DE **DIOCALANDRA FRUMENTI** EN LAS PALMERAS DE LANZAROTE

Jornada Técnica PALMERAS LANZAROTE Cabildo Insular de Lanzarote Arrecife, 17 de julio de 2025

1. ¿Cómo surge este estudio y quiénes lo impulsaron?

- El volumen creciente de restos de palmera infestada por Diocalandra frumenti hace inviable cumplir con la normativa fitosanitaria actual, que exige su destrucción mediante tratamiento químico o enterramiento.
- Este estudio fue impulsado por el Instituto Canario de Investigaciones Agrarias (ICIA) y el Servicio de Residuos del Cabildo de Gran Canaria.
- El objetivo fue comprobar si el compostaje controlado podía ser una alternativa eficaz, segura y sostenible, permitiendo valorizar estos residuos como abono orgánico en jardinería.

PLAN DE CONTROL Y ERRADICACIÓN DE *DIOCALANDRA FRUMENTI* EN LAS PALMERAS DE LANZAROTE

2. ¿Dónde se llevó a cabo el estudio?

- El estudio se desarrolló en el Ecoparque Gran Canaria Sur (≈ Complejo Ambiental de Juan Grande), ubicado en el T.M. de San Bartolomé de Tirajana.
- Este Ecoparque cuenta con una planta de compostaje con túneles cubiertos y aireación forzada, con capacidad para 23.000 t/año.
- Cada trinchera de compostaje mide 6,5 m de ancho × 30 m de largo, y el material puede alcanzar 1,5–1,8 m de altura.
- El ensayo se realizó bajo las condiciones reales del proceso aplicado en el Ecoparque.

3. ¿Qué se exige hacer con los restos de palmera infestados por *D. frumenti*?

- La Orden de 29 de octubre de 2007 declara a *D. frumenti* como agente nocivo y establece que los restos de palmeras infestadas deben ser:
 - ✓ Tratados con insecticida autorizado,
 - ✓ Aplicación de cal viva,
 - ✓ Y finalmente enterrados.
- Sin embargo, estos restos también son considerados biorresiduos según la Ley 22/2011 (28 de julio), por lo que pueden utilizarse como fuente de carbono en la producción de compost de alta calidad, conforme a los principios de valorización y economía circular.

Boletín Oficial de Canarias núm. 222, martes 6 de noviembre de 2007

1833 ORDEN de 29 de octubre de 2007, por la que se declara la existencia de las plagas producidas por los agentes nocivos Rhynchophorus Ferrugineus (Olivier) y Diocalandra Frumenti (Fabricius) y se establecen las medidas fitosanitarias para su erradicación y control.

ANEXOI

DESTRUCCIÓN DE PALMERAS

Se enterrarán los restos de palmera, quedando éstos como mínimo, a dos metros de profundidad de tal forma que la parte superior del material vegetal diste dos metros de la superficie. Los restos se tratarán, con un insecticida autorizado y cal viva, antes de cubrirlos con tierra. Se apisonará el enterramiento.

LEGISLACIÓN CONSOLIDADA

Ley 22/2011, de 28 de julio, de residuos y suelos contaminados.

Jefatura del Estado «BOE» núm. 181, de 29 de julio de 2011 Referencia: BOE-A-2011-13046

Sección 3.ª Biorresiduos

Artículo 24. Biorresiduos.

Las autoridades ambientales promoverán, sin perjuicio de las medidas que se deriven de las actuaciones que a nivel comunitario se emprendan en cumplimiento del último párrafo del artículo 22 de la Directiva 2008/98/CE, medidas que podrán incluir en los planes y programas de gestión de residuos previstos en el artículo 14, para impulsar:

 a) La recogida separada de biorresiduos para destinarlos al compostaje o a la digestión anaerobia en particular de la fracción vegetal, los biorresiduos de grandes generadores y los biorresiduos generados en los hogares.

b) El compostaje doméstico y comunitario.

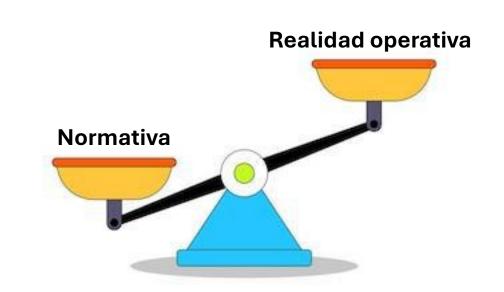
Página 25

4. El compostaje como medida dentro de la Gestión Integrada de Plagas (GIP)

- La Orden de 29 de octubre de 2007 impulsó el uso de insecticidas, podas y gestión de residuos frente a D. frumenti.
- El RD 1311/2012 estableció la Gestión Integrada de Plagas (GIP) como marco obligatorio y promueve la prioridad de medidas preventivas y de manejo cultural frente al uso sistemático de fitosanitarios.
- El compostaje controlado de restos infestados por D. frumenti se alinea con esta filosofía al:
 - Prevenir nuevas infestaciones.
 - Eliminar focos de inóculo en origen.
 - Favorecer la sostenibilidad del sistema productivo.

Principios de la gestión integrada de plagas

(Modificado de Boller et al., 2004)



5. ¿Por qué estas medidas resultan problemáticas hoy?

- Porque la cantidad de restos de palmera afectados es muy elevada, especialmente en los municipios turísticos.
- Porque el tratamiento químico y el enterramiento generan altos costes económicos, de personal y de transporte.
- Porque estas prácticas entran en conflicto con la gestión sostenible de residuos que promueve la Ley 22/2011 (valorización, economía circular).
- Porque la capacidad de los Ecoparques es limitada y no está diseñada para aplicar tratamientos fitosanitarios individualizados a cada residuo.

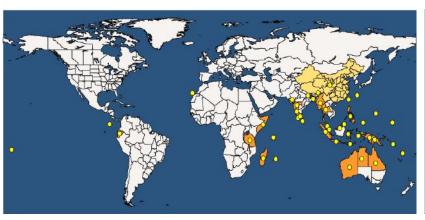
Acumulación de restos sin tratar o sin valor, y una presión creciente sobre los gestores públicos.

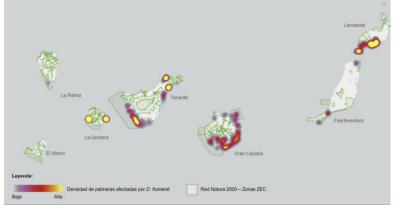
PLAN DE CONTROL Y ERRADICACIÓN DE *DIOCALANDRA FRUMENTI* EN LAS PALMERAS DE LANZAROTE

6. ¿Qué exige la normativa para garantizar la sanitización del compost?

Las principales guías europeas y la USEPA coinciden en que la **temperatura** y el **tiempo de exposición** son los factores determinantes para eliminar patógenos en compostaje:

Condiciones mínimas para asegurar un compost libre de plagas y patógenos:

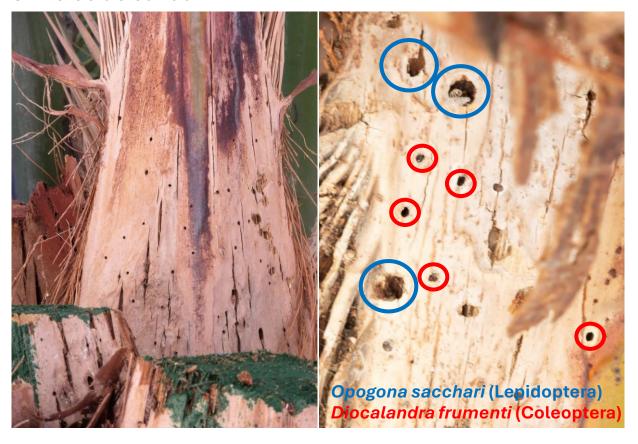

\$\rightarrow\$ ≥ 55 °C durante al menos 15
días con 5 volteos (USEPA, 2003)


Organización / Norma	Temperatura mínima	Tiempo mínimo	Humedad relativa	Observaciones
USEPA (2003) – sistema cerrado (in- vessel)	≥ 55 °C	3 días consecutivos	No especifica	Sistema cerrado; toda la masa debe alcanzar esa temperatura
USEPA (2003) – sistema abierto (pilas o trincheras)	≥ 55 °C	15 días + 5 volteos	No especifica	Pilas volteadas al menos cinco veces
BSI (2005)	≥ 65 °C	7 días no consecutivos	≥ 50 %	Voltear las pilas al menos dos veces
EPPO (2008)	≥ 65 °C	7 días consecutivos	≥ 40 %	Aplicable a pilas volteadas; todo el material debe exponerse a estas condiciones
BioAbfV (1998)	≥ 60 °C	7 días consecutivos	≥ 40 %	Aplicable a pilas cubiertas
BioAbfV (1998)	≥ 55 °C	14 días consecutivos	≥ 40 %	Todo el material debe alcanzar esas condiciones

7. ¿Quién es Diocalandra frumenti y por qué es tan difícil de controlar?

- Originario del Sureste Asiático. En Europa, está presente solo en Canarias desde 1998 en Gran Canaria.
- Actualmente está presente en todas las islas, salvo en El Hierro y La Graciosa.
- Ciclo biológico corto (10 12 semanas) → varias generaciones por año
- Fase larvaria: la más dañina, excava galerías en tejidos vivos.
- Hábitos crípticos = vive dentro de los tejidos → difícil de detectar y tratar.
- Afecta especialmente a *Phoenix canariensis*.
- Los daños visibles aparecen cuando el ataque está avanzado.

+ dañina



Síntomas internos

Galerías internas

Orificios de salida



Especie de hábitos crípticos que dificulta la detección y el tratamiento con insecticidas.

Síntomas externos visibles

Seca lateral

Exudados gomosos

Aspecto general

Los daños visibles aparecen en fases avanzadas, cuando ya es difícil revertir el ataque.

8. ¿Qué quiso comprobar este estudio?

- El estudio se desarrolló en dos fases experimentales en el Ecoparque Gran Canaria Sur:
 - **Primera fase (2017):** permitió evaluar por primera vez la **viabilidad del compostaje** como alternativa al tratamiento fitosanitario y enterramiento obligatorio establecido por la normativa.
 - Segunda fase (2019): se realizó con el objetivo de verificar los resultados obtenidos en 2017 y validar la reproducibilidad bajo condiciones similares.
- Ambas fases se plantearon con el mismo objetivo:
 - ✓ Eliminar eficazmente a *D. frumenti*.
 - ✓ Reducir la presencia de hongos fitopatógenos en el material vegetal.
 - ✓ Permitir la reutilización del compost como abono orgánico en jardinería.

Generar evidencia técnica para proponer una modificación razonada de la normativa actual.

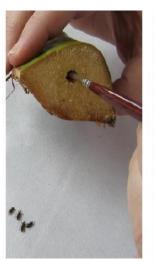
9. ¿En qué consiste una pila de compostaje en el Ecoparque Gran Canaria Sur?

- El material a compostar varió entre fases:
 - ✓ Fase 1 (2017): poda de palmera triturada, restos de panadería (pan congelado) y lodos procedentes de digestores anaerobios del Ecoparque GC Norte.
 - ✓ Fase 2 (2019):
 - **Túnel 3:** poda triturada, restos de panadería y digestato de lodos.
 - **Túnel 1:** poda triturada, restos de panadería y FORM (fracción orgánica de residuos municipales, compuesta por restos de comida y vegetales de pequeño tamaño).
- El proceso completo dura unos 42-48 días, con al menos un volteo intermedio, y una evolución natural de la temperatura a través de las fases: mesófila → termófila → maduración.

10. ¿Cómo se monitorizó la temperatura durante el proceso de compostaje?

- El Ecoparque Gran Canaria Sur registra la temperatura del proceso mediante sondas digitales inalámbricas con alta precisión (rango: –40 a +375°C), que permiten el seguimiento en tiempo real del perfil térmico.
- En el ensayo de 2017, se recogieron más de 118.000 registros (uno por minuto) a lo largo de 42 días, lo que permitió caracterizar el perfil térmico.
- En 2019, además de las sondas del Ecoparque, se instaló un registrador externo de temperatura y humedad relativa en el túnel 3 (posición media y altura media), protegido en carcasa.

Registrador de temperatura y humedad relativa colocado, dentro de una carcasa protectora, en el túnel 3 de compostaje durante el ensayo llevado a cabo en 2019


11. ¿Cómo se diseñó el ensayo para evaluar la supervivencia de D. frumenti?

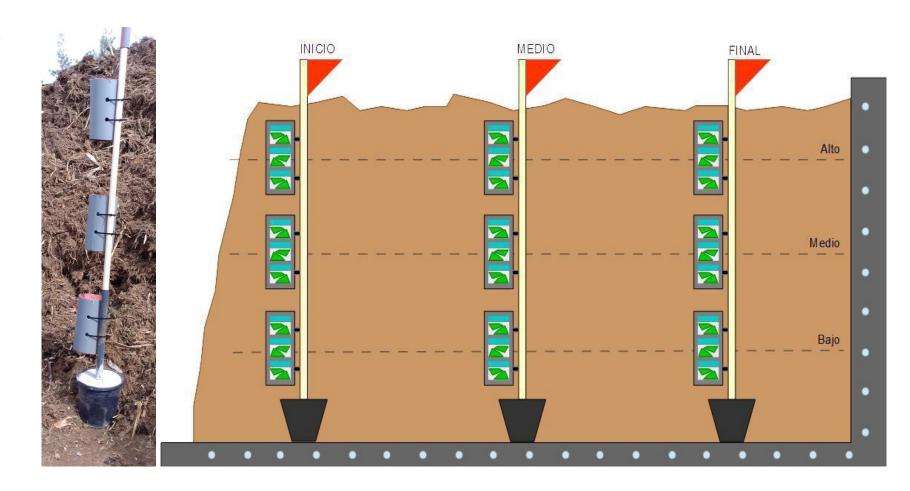
Preparación de muestras vegetales

Se seleccionaron cuñas de tábala de palmera, en lugar de caña de azúcar, debido a su mayor capacidad para conservar la humedad:

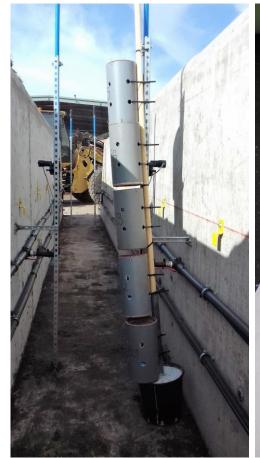
- ✓ Larva y pupa: se utilizaron tábalas de palmera con galerías naturales y recientes.
- ✓ Adultos: se usaron cuñas sanas a las que se les practicó una galería central artificial. Se introdujeron 5 adultos de D. frumenti mediante pincel. La galería se cerró con un tapón elaborado con la propia tábala y se selló con pasta cicatrizante para reducir la desecación.

Distribución de los contenedores

- Las cuñas infestadas se introdujeron en recipientes ventilados, provistos de orificios cubiertos con malla metálica.
- Cada recipiente contenía dos tipos de cuñas, una con larvas y pupas en galerías naturales y otra con 5 adultos de D. frumenti introducidos manualmente mediante pincel.
- Para cada combinación de posición (inicio, centro y final) y altura (alta, media y baja), se colocaron 3 recipientes (réplicas) dentro de un tubo cilíndrico perforado, que permitía el intercambio gaseoso sin alterar las condiciones térmicas del entorno de compostaje.



Distribución de los contenedores


- Los tubos cilíndricos perforados que contenían las tres réplicas por punto experimental se colocaron sobre estructuras metálicas que permitían fijarlos a diferentes alturas (alta, media y baja) y en distintas posiciones dentro de cada túnel (inicio, centro y final).
- Esta distribución permitió evaluar si la temperatura o ubicación influía en la supervivencia del insecto.

¿Cómo se verificó la validez del ensayo?

- Paralelamente, se establecieron controles fuera del material compostado, ubicados:
 - En los pasillos divisorios de los túneles, y
 - En el **laboratorio**, conservados a temperatura ambiente.
- Estos controles permitieron confirmar que los insectos estaban vivos al inicio y eran viables durante el periodo del ensayo.

12. ¿Qué análisis se realizaron sobre la microbiota fúngica?

■ Fase I – 2017:

Se analizaron dos tipos de muestras:

- Poda triturada sin compostar, para conocer el inóculo inicial de hongos fitopatógenos.
- Compost final, para evaluar el inóculo residual.

El análisis se centró en la detección de *F. oxysporum* f. sp. canariensis, *C. paradoxa* y *T. radicicola*.

■ Fase II – 2019:

Se realizó un **ensayo controlado** que contenía una mezcla de raquis (afectados naturalmente) y granos de cebada (inoculados artificialmente) con *F. oxysporum* f. sp. canariensis.

Los módulos se introdujeron en diferentes posiciones de las trincheras de compostaje. Tras la fase de maduración, se extrajeron e inspeccionaron para confirmar la presencia o eliminación del patógeno.

13. ¿Cumplió el proceso de compostaje con los requisitos normativos para su sanitización?

Condiciones observadas durante el ensayo en el Ecoparque Gran Canaria Sur:

- Duración total del proceso: 42 días
- Volteo: 1 único volteo al día 21
- Temperatura: ≥ 55 °C mantenida durante
 7 días consecutivos
- Temperatura ≥ 65 °C: alcanzada solo puntualmente
- Registros de temperatura: 118.681
 registros automáticos (uno por minuto)

Requisitos normativos de sanitización del compost

Norma / Guía	Temperatura exigida	Tiempo mínimo	¿Se cumplió en el ensayo?
USEPA (2003) – Pilas	≥ 55 °C	15 días + 5 volteos	X Solo 1 volteo/ 7 días ≥ 55 °C
EPPO (2008)	≥ 65 °C	7 días consecutivos	X 65 °C solo alcanzado puntualmente
BioAbfV (1998)	≥ 60 °C	7 días consecutivos	X No sostenida7 días
BSI (2005)	≥ 65 °C	7 días no consecutivos	X No alcanzado

Aunque se alcanzaron temperaturas ≥ 55 °C durante 7 días consecutivos, **el proceso no cumplió con los requisitos mínimos** establecidos por las principales guías internacionales **para una sanitización eficaz del compost**.

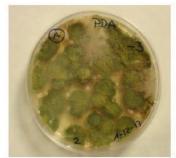
14. ¿Qué se observó sobre la supervivencia de D. frumenti?

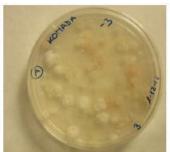
- En ambas fases del estudio (2017 y 2019), no se recuperaron individuos vivos de D. frumenti en ninguno de los túneles, posiciones ni alturas evaluadas.
- Los controles externos (pasillos y laboratorio) confirmaron que los insectos eran viables al inicio, lo que atribuye la mortalidad al proceso de compostaje.
- Se observó serrín dentro de las galerías, lo que indica que la mortalidad ocurrió como consecuencia directa del compostaje.
- A pesar de no cumplirse los requisitos normativos de sanitización, las condiciones reales del Ecoparque resultaron letales para la plaga.

Supervivencia (%) de adultos de *D. frumenti* en función de la posición y la altura dentro de cada túnel, bajo condiciones de compostaje.

Posición	Altura	% de supervivencia de adultos de <i>D. frumenti</i> (N= número de individuos ensayados)			
		Túnel 1	Túnel 2	Túnel 3	
Inicio	alto	0 (N=10)	0 (N=10)	0 (N=10)	
	medio	0 (N=10)	0 (N=10)	0 (N=9)	
	bajo	0 (N=12)	0 (N=10)	0 (N=10)	
Medio	alto	0 (N=12)	0 (N=10)	0 (N=5)	
	medio	0 (N=11)	0 (N=10)	0 (N=10)	
	bajo	0 (N=11)	0 (N=10)	0 (N=10)	
Bajo	alto	0 (N=10)	0 (N=10)	0 (N=9)	
	medio	0 (N=9)	0 (N=10)	0 (N=9)	
	bajo	0 (N=12)	0 (N=10)	0 (N=9)	
	Total:	0 (N=97)	0 (N=90)	0 (N=81)	

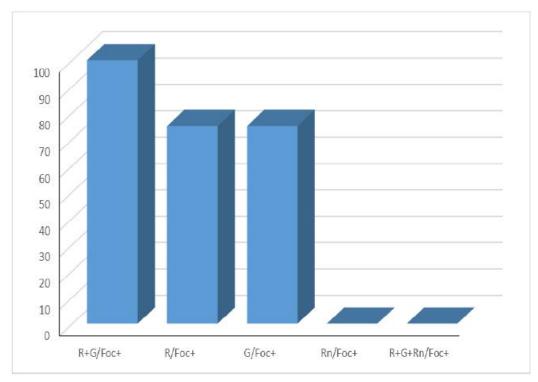
N = número de túneles evaluados.


14. ¿Qué se observó sobre la presencia de hongos fitopatógenos tras el compostaje?


■ Fase I – 2017:

- En la **poda triturada sin compostar** no se detectaron *Fusarium oxysporum* f. sp.
 canariensis, *Ceratocystis paradoxa* ni *Thielaviopsis radicicola*.
- En el **compost final**, tampoco se detectaron esos fitopatógenos, pero se observó una **alta diversidad de hongos saprótrofos**, con presencia destacada de los géneros *Aspergillus* y *Penicillium*.

Aspergillus fumigatus sobre restos de poda después de finalizada la fase termófila.


Crecimiento de colonias fúngicas a partir de compost final en los medios PDA, Komada y DRBC (de izquierda a derecha), tras 7 días de incubación a 25 °C.

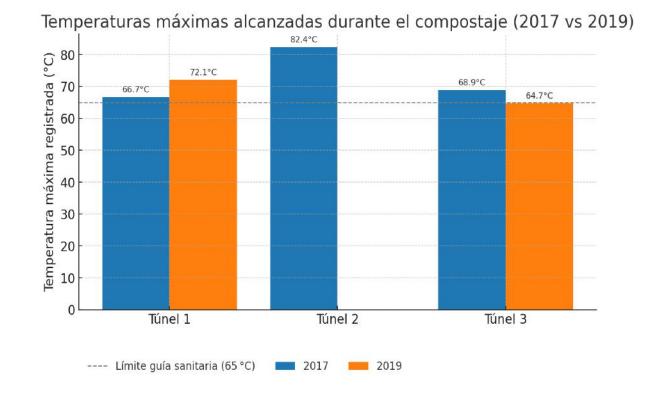
14. ¿Qué se observó sobre la presencia de hongos fitopatógenos tras el compostaje?

■ Fase II – 2019:

- El patógeno se recuperó tras el compostaje en numerosos módulos, especialmente en aquellos con raquis inoculados artificialmente, que demostraron mayor resistencia al proceso.
- En cambio, **los raquis infectados**naturalmente no mostraron presencia del
 patógeno tras el compostaje, lo que sugiere
 que fueron más susceptibles a las
 condiciones térmicas.
- La variabilidad en los resultados se atribuye a diferencias en las condiciones internas de las pilas (temperatura, aireación, humedad) y al tipo de sustrato portador.

Porcentaje de módulos con Foc en la trinchera 2 durante el periodo de compostaje

R+G/Foc+: Nº de módulos con raquis o granos con presencia de Foc.


R/Foc+: Nº de módulos con raquis (inoculados en laboratorio) con presencia de *Foc*. G/Foc+: Nº de módulos con granos (inoculados en laboratorio) con presencia de *Foc*. Rn/Foc+: Nº de módulos con raquis (infectados naturalmente) con presencia de *Foc*. R+G+Rn/Foc+: Nº de módulos con todos los componentes (raquis, granos y raquis natural) con presencia de *Foc*.

15. ¿Qué temperaturas se alcanzaron durante el compostaje?

- Durante el compostaje se alcanzaron temperaturas elevadas, con picos máximos de entre 65 y 72 °C según el túnel y el año.
- Aunque estos valores superan el umbral de 65 °C recomendado por algunas guías internacionales, no se mantuvieron de forma sostenida durante 7 días consecutivos.

A pesar de que no se mantuvieron temperaturas ≥ 65 °C durante 7 días consecutivos, los **picos térmicos alcanzados (hasta 72 °C)** y la exposición prolongada a temperaturas ≥ 55 °C durante varios días fueron suficientes para eliminar *D. frumenti* y *F. oxysporum* f. sp. canariensis bajo las condiciones del Ecoparque.

16. ¿Qué demuestran estos resultados?

Sobre Diocalandra frumenti:

El proceso de **compostaje fue eficaz para eliminar individuos de** *D. frumenti*, a pesar de no cumplirse los requisitos térmicos mínimos exigidos por las principales guías internacionales.

Sobre Fusarium oxysporum f. sp. canariensis:

♦ Fase I − 2017:

- No se detectó el patógeno en el compost final ni en la poda sin compostar.
- Se observó una microbiota fúngica saprótrofa típica (*Aspergillus, Penicillium*), sin presencia de hongos fitopatógenos.

♦ Fase II – 2019:

- El ensayo controlado evidenció que **el compostaje no eliminó completamente el inóculo de Foc**.
- Se recuperó el patógeno en numerosos módulos, sobre todo en raquis inoculados artificialmente.
- En los raquis infectados naturalmente no se detectó Foc tras el compostaje.
- La **eficacia del proceso dependió de la posición y condiciones microambientales** en la pila (temperatura, aireación, humedad).

17. ¿Puede el compostaje ser una alternativa viable al enterramiento?

El compostaje ha demostrado ser una estrategia eficaz para eliminar a esta plaga, pero presenta ciertas limitaciones cuando se trata de patógenos más persistentes, como *Fusarium oxysporum* f. sp. canariensis.

Para que el compostaje sea una alternativa segura, es necesario cumplir con varios requisitos clave:

- ✓ Garantizar una fase termófila suficientemente prolongada y homogénea, que asegure la inactivación de los patógenos.
- ✓ Implementar un control riguroso de parámetros como la temperatura, la humedad y la aireación.
- ✓ Y, sobre todo, verificar la ausencia de patógenos mediante análisis microbiológicos en el compost final.

Agradecimientos

- Al Dr. Federico Laich y a Dña. Patricia Pérez Parrado (ICIA), por llevar a cabo los análisis microbiológicos y aportar su experiencia técnica en la interpretación de resultados.
- Al personal del Ecoparque Gran Canaria Sur, por permitirnos el acceso a sus instalaciones y facilitarnos los medios para integrar el ensayo en su proceso de compostaje.
- Al personal de GMR Canarias, por proporcionarnos tábalas de palmera infestadas por D. frumenti necesarias para la prueba.
- Al equipo de la Unidad de Protección Vegetal del ICIA, por su colaboración en la preparación de las estructuras metálicas y los contenedores utilizados en las pruebas.

Viabilidad del compostaje de los restos de poda de palmera infestada por *Diocalandra frumenti* (Fabricius), para su aplicación como abono orgánico en jardinería: experiencias realizadas

Carina Ramos Cordero

Técnico contratado por el Instituto Canario de Investigaciones Agrarias (ICIA) en el marco del proyecto LIFE Phoenix

PLAN DE CONTROL Y ERRADICACIÓN DE **DIOCALANDRA FRUMENTI** EN LAS PALMERAS DE LANZAROTE

Jornada Técnica
PALMERAS LANZAROTE
Cabildo Insular de Lanzarote
Arrecife, 17 de julio de 2025

